

DAB-161100010403 Seat No. _____

B. B. A. (Sem. IV) (CBCS) (W.E.F.-2016) Examination April -2022

Statistics for Business Decisions (Old Course)

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) Answer any five questions.
- (2) Each question carries equal marks.
- 1 (a) What do you mean by statistical quality control? How it is useful in industry?
 - (b) The number of defects per each group containing
 10 radio sets are as follows. Draw C-chart and give
 your comments:

Group No.	1	2	3	4	5	6	7	8	9	10
No. of Defects	12	8	10	16	14	10	2	6	12	9

The following table gives mean and range of 10 samples each of size 5. Draw \overline{X} and R charts and state your conclusions:

Sample No.	1	2	3	4	5	6	7	8	9	10
$ar{X}$	43	49	37	44	45	37	51	46	43	47
R	5	6	5	7	7	4	8	6	4	6

(For
$$n = 5$$
; $A_2 = 0.58$, $D_3 = 0$, $D_4 = 2.11$)

- 3 (a) Explain the following terms:
 - (i) Acts
 - (ii) State of nature
 - (iii) Pay-off matrix

7

- (b) For the following pay-off matrix find the best act using
 - (i) Maximin principle
 - (ii) Maximax principle
 - (iii) Laplace principle

Events	Acts							
Events	A_{l}	A_2	A_3	A_4	A_5			
S_1	10	25	10	15	20			
S_2	- 5	10	-5	10	-5			
S_3	15	5	10	10	10			

- 4 (a) Explain in brief Decision theory.
 - (b) Form the following pay-off table find the best act according to EMV and EOL criteria:

•	Events		Ac	cts	Probability		
	Liveriis	A_{l}	A_2	A_3	A_4	11000011119	
	S_1	50	10	60	80	0.25	
	S_2	0	30	45	40	0.40	
	S_3	80	35	30	45	0.35	

- 5 (a) Explain moving average method of forecasting.
 - (b) Fit a straight line to the following data and form it estimate the production for the year 1998:

	Year	1992	1993	1994	1995	1996
Ī	Production	40	50	62	58	60

6 Using the method of exponential smoothing, taking initial estimate as 100 and $\alpha = 0.4$, prepare forecast:

Year	2001	2002	2003	2004
Market value	150	160	155	170

7

14

7

- 7 (a) Explain the following terms:
 - (i) Type I and type II errors.
 - (ii) Level of Significance.
 - (b) In a certain city 380 men out of 800 men were found to 7 be smokers. Discuss whether this information supports the view that the majority of men in the city are smokers.
- **8** (a) Explain about :

7

7

- (i) One tailed and two tailed test.
- (ii) Critical region.
- (b) A stenographer claims that he can write at an average speed of 120 words per minute. In 100 trials he obtained an average speed of 116 words per minute with a S.D. of 15 words. Is the claim justified?
- 9 (a) What do you mean by paired t-test? Explain how it can be applied?
 - (b) An IQ test was administered to 5 persons before and after 7 they were trained. The results are given below:

Candidate	1	2	3	4	5
IQbe fore training	110	120	123	132	125
IQ after training	120	118	125	136	121

Test whether there is any change in IQ after the training programme.

10 (a) Explain F-test.

7

7

(b) The following samples are drawn from two normal populations. Test the hypothesis that the population variances are equal:

Sample I	8	10	14	10	13		
Sample II	12	15	11	16	14	14	16

3